UCM-Captions, Sydney-Captions, RSICD, RSITMD, NWPU-Captions, RS5M, SkyScript|遥感图像数据集|图像标注数据集
收藏Awesome-Remote-Sensing-Cross-Modal-Image-Text-Retrieval
数据集概述
遥感图像-文本数据集
数据集名称 | 图像数量 | 图像分辨率 | VLMs |
---|---|---|---|
UCM-Captions | 613 | 256 × 256 | - |
Sydney-Captions | 2,100 | 500 × 500 | - |
RSICD | 10,921 | 224 × 224 | - |
RSITMD | 4,743 | 256 × 256 | - |
NWPU-Captions | 31,500 | 256 × 256 | - |
RS5M | 5 million+ | 所有分辨率 | GeoRSCLIP |
SkyScript | 5.2 million+ | 所有分辨率 | SkyCLIP |
遥感跨模态图像-文本检索模型
论文 | 标题 | 出版物 | 机构 | 代码 | 备注 |
---|---|---|---|---|---|
CDMAN | Thread the Needle: Cues-Driven Multi-Association for Remote Sensing Cross-Modal Retrieval | TGRS 2024 | Wuhan University of Technology | - | |
MSA | Transcending Fusion: A Multiscale Alignment Method for Remote Sensing Image–Text Retrieval | TGRS 2024 | Xidian University | Github | |
KTIR | Knowledge-aware Text-Image Retrieval for Remote Sensing Images | TGRS 2024 | EPFL | - | |
CMPAGL | Cross-Modal Prealigned Method With Global and Local Information for Remote Sensing Image and Text Retrieval | TGRS 2024 | Shanghai Maritime University | Github | |
FGIS | Fine-Grained Information Supplementation and Value-Guided Learning for Remote Sensing Image-Text Retrieval | JSTARS 2024 | Chongqing University | - | |
EBAKER | Eliminate Before Align: A Remote Sensing Image-Text Retrieval Framework with Keyword Explicit Reasoning | ACMMM 2024 | Tianjin University | - | |
CUP | Cross-Modal Remote Sensing Image–Text Retrieval via Context and Uncertainty-Aware Prompt | TNNLS 2024 | Xidian University | Github | |
CCLS2T | Cross-Modal Contrastive Learning With Spatiotemporal Context for Correlation-Aware Multiscale Remote Sensing Image Retrieval | TGRS 2024 | Xidian University | - | |
MIIA | Global–Local Information Soft-Alignment for Cross-Modal Remote-Sensing Image–Text Retrieval | TGRS 2024 | Northwestern Polytechnical University | - | |
SARCI | Scale-Aware Adaptive Refinement and Cross-Interaction for Remote Sensing Audio-Visual Cross-Modal Retrieval | TGRS 2024 | Wuhan University of Technology | Github | |
GLISA | Masking-Based Cross-Modal Remote Sensing Image–Text Retrieval via Dynamic Contrastive Learning | TGRS 2024 | China University of Mining and Technology | - | |
SCAT | Spatial–Channel Attention Transformer With Pseudo Regions for Remote Sensing Image-Text Retrieval | TGRS 2024 | Northwestern Polytechnical University | - | |
FSISR | Cross-Modal Hashing With Feature Semi-Interaction and Semantic Ranking for Remote Sensing Ship Image Retrieval | TGRS 2024 | Harbin Institute of Technology | - | |
SkyEyeGPT | Unifying Remote Sensing Vision-Language Tasks via Instruction Tuning with Large Language Model | Arxiv 2024 | Northwestern Polytechnical University | Github | |
MFF-SFE | Cross-modal retrieval method based on MFF-SFE for remote sensing image-text | 中国科学院大学学报 2024 | Aerospace Information Research Institute, Chinese Academy of Sciences | - | |
RemoteCLIP | RemoteCLIP: A Vision Language Foundation Model for Remote Sensing | TGRS 2024 | Hohai University | Github | |
C2F-ITR | From Coarse To Fine: An Offline-Online Approach for Remote Sensing Cross-Modal Retrieval | IGARSS 2024 | Beijing Foreign Studies University | - | |
MGRM-EL | Exploring Uni-Modal Feature Learning on Entities and Relations for Remote Sensing Cross-Modal Text-Image Retrieval | TGRS 2024 | Northwestern Polytechnical University | - | |
SIRS | Multitask Joint Learning for Remote Sensing Foreground-Entity Image–Text Retrieval | TGRS 2024 | Soochow University | Github | |
PIR | A Prior Instruction Representation Framework for Remote Sensing Image-text Retrieval | ACMMM 2023 oral | Zhejiang University of Technology | Github | |
PE-RSITR | Parameter-Efficient Transfer Learning for Remote Sensing Image–Text Retrieval | TGRS 2023 | Northwestern Polytechnical University | Github | |
HVSA | Hypersphere-Based Remote Sensing Cross-Modal Text–Image Retrieval via Curriculum Learning | TGRS 2023 | Aerospace Information Research Institute, Chinese Academy of Sciences | Github | |
SWAN | Reducing Semantic Confusion Scene-aware Aggregation Network for Remote Sensing Cross-modal Retrieval | ICMR 2023 oral | Zhejiang University of Technology | Github | |
KAMCL | Knowledge-Aided Momentum Contrastive Learning for Remote-Sensing Image Text Retrieval | TGRS 2023 | Tianjin University | Github | |
IEFT | Interacting-Enhancing Feature Transformer for Cross-Modal Remote-Sensing Image and Text Retrieval | TGRS 2023 | Xidian University | Github | |
Multilanguage Transformer | Multilanguage Transformer for Improved Text to Remote Sensing Image Retrieval | JSTARS 2022 | King Saud University | - | |
GaLR | Remote Sensing Cross-Modal Text-Image Retrieval Based on Global and Local Information | TGRS 2022 | Aerospace Information Research Institute, Chinese Academy of Sciences | Github | |
AMFMN | Exploring a Fine-Grained Multiscale Method for Cross-Modal Remote Sensing Image Retrieval | TGRS 2021 | Aerospace Information Research Institute, Chinese Academy of Sciences | Github | |
LW-MCR | A Lightweight Multi-Scale Crossmodal Text-Image Retrieval Method in Remote Sensing | TGRS 2021 | Aerospace Information Research Institute, Chinese Academy of Sciences | Github | |
VSE++ | VSE++: Improving Visual-Semantic Embeddings with Hard Negatives | BMVC 2018 spotlight | University of Toronto | Github |
遥感视觉基础模型
缩写 | 标题 | 出版物 | 论文 | 代码与权重 |
---|---|---|---|---|
GeoKR | Geographical Knowledge-Driven Representation Learning for Remote Sensing Images | TGRS2021 | GeoKR | link |
GASSL | Geography-Aware Self-Supervised Learning | ICCV2021 | GASSL | link |
遥感视觉-语言基础模型
缩写 | 标题 | 出版物 | 论文 | 代码与权重 |
---|---|---|---|---|
RSGPT | RSGPT: A Remote Sensing Vision Language Model and Benchmark | Arxiv2023 | RSGPT | link |
RemoteCLIP | RemoteCLIP: A Vision Language Foundation Model for Remote Sensing | Arxiv2023 | RemoteCLIP | link |
GeoRSCLIP | RS5M: A Large Scale Vision-Language Dataset for Remote Sensing Vision-Language Foundation Model | Arxiv2023 | GeoRSCLIP | link |
GRAFT | Remote Sensing Vision-Language Foundation Models without Annotations via Ground Remote Alignment | ICLR2024 | GRAFT | - |
遥感视觉-位置基础模型
缩写 | 标题 | 出版物 | 论文 | 代码与权重 |
---|---|---|---|---|
CSP | CSP: Self-Supervised Contrastive Spatial Pre-Training for Geospatial-Visual Representations | ICML2023 | CSP | link |
GeoCLIP | GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization | NeurIPS2023 | GeoCLIP | link |
SatCLIP | SatCLIP: Global, General-Purpose Location Embeddings with Satellite Imagery | Arxiv2023 | SatCLIP | link |

MedDialog
MedDialog数据集(中文)包含了医生和患者之间的对话(中文)。它有110万个对话和400万个话语。数据还在不断增长,会有更多的对话加入。原始对话来自好大夫网。
github 收录
中国1km分辨率逐月降水量数据集(1901-2024)
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
国家青藏高原科学数据中心 收录
中国劳动力动态调查
“中国劳动力动态调查” (China Labor-force Dynamics Survey,简称 CLDS)是“985”三期“中山大学社会科学特色数据库建设”专项内容,CLDS的目的是通过对中国城乡以村/居为追踪范围的家庭、劳动力个体开展每两年一次的动态追踪调查,系统地监测村/居社区的社会结构和家庭、劳动力个体的变化与相互影响,建立劳动力、家庭和社区三个层次上的追踪数据库,从而为进行实证导向的高质量的理论研究和政策研究提供基础数据。
中国学术调查数据资料库 收录
鸭绿江流域与水系 – 世界地理数据大百科辞条
鸭绿江流域是指鸭绿江干流和支流汇水区,地理位置为39°43′57″N-42°17′28″N,123°35′59″E-128°45′50″E。与其接壤的流域分别是辽河流域(东)、松花江流域(北)、图们江流域(北)、大同江流域(西南)等。鸭绿江流域界线在中国境内从长白山天池火山口的南壁起始,向西南经长白山脉、转向西南至千山山脉的北部,再折向南入海;在朝鲜境内,鸭绿江流域从长白山天池南坡启始向东南经过摩天岭山脉,在头流山(2309 m)转向西南方向的赴战岭山脉,在英雄里附近转向西,经狼林山(2184 m)、广城、松源,转向西南方向的狄逾岭山脉,接江南山脉的南部后至鸭绿江河口。鸭绿江流域面积65215.49 km²,其中,中国境内面积32799.22 km²,朝鲜境内面积32416.27 km²。鸭绿江是中(国)朝(鲜)界河,它起源于长白山天池火山口的南壁,向南经惠山(朝)、折向西经临江(中)、再转向西南直向丹东(中)、新义州(朝),最后在东港(中)和多狮里(朝)附近注入黄海的西朝鲜湾。鸭绿江干流长844.98 km,有几条比较大的支流汇入,包括在朝鲜境内的虛川江、長津江、厚州川、慈城江、禿魯江、忠满江和三桥川;在中国境内的浑江、蒲石河、瑗河等。鸭绿江干流沿中朝国界线自东北向西南流经吉林省的长白朝鲜族自治县、临江市、集安市;辽宁省的桓仁满族自治县、宽甸满族自治县、丹东市和东港市;朝鲜的两江道、慈江道和平安北道。鸭绿江流域地处暖温带湿润季风气候区。年降水量800-1200 mm。流域内多山,最高海拔2745 m,河道比降比较大,达到0.0032,其中在中段可达到0.01。丰富的降水补给和较大的河床比降,使得鸭绿江流域成为亚洲单位面积水资源和水利资源最丰富的流域之一。近80年来,流域内先后建造了水丰水库(中、朝)、渭源水库(中、朝)、铁甲水库(中)、太平哨水库(中)、桓仁水库(中)、回龙山水库(中)、满丰湖水库(朝)、版平里水库(朝)、时中湖水库(朝)、狼林湖水库(朝)、长津湖水库(朝)、赴战湖水库(朝)、丰西湖水库等(朝)。数据文件包括鸭绿江干流、鸭绿江水系和鸭绿江流域地理信息系统数据文件组成。数据集以.kmz 和.shp格式存储,数据量43.8 MB(压缩为20.1 MB)。
国家对地观测科学数据中心 收录
AIS数据集
该研究使用了多个公开的AIS数据集,这些数据集经过过滤、清理和统计分析。数据集涵盖了多种类型的船舶,并提供了关于船舶位置、速度和航向的关键信息。数据集包括来自19,185艘船舶的AIS消息,总计约6.4亿条记录。
github 收录