five

RSSI Measurements of Beacon Frames from Wi-Fi Radio Waves

收藏
Mendeley Data2024-01-31 更新2024-06-28 收录
下载链接:
https://ieee-dataport.org/documents/rssi-measurements-beacon-frames-wi-fi-radio-waves
下载链接
链接失效反馈
资源简介:
The data collection phase of the proposed system involves the collection of beacon frame characteristics and RSSI values from Wi-Fi APs using two Raspberry Pi devices. The purpose of this phase is to gather enough data to train the ML module of the proposed system to accurately determine the user's devices location based on these characteristics and values. To collect the data, we defined a threshold distance of 7 feet. This is the maximum distance between the user's devices that we consider acceptable for the purposes of this experiment. We then collected two datasets: one with data collected while the two Raspberry Pis were with 7 feet or less of each other, and another with data collected while the distance between the two Raspberry Pis was over 7 feet. In the first dataset collection stage, we followed the following steps:Began collecting data by placing the two Raspberry Pis 7 feet from each other.Moved the two Raspberry Pis closer and farther from each other while maintaining the distance within the predefined threshold.Repeated the data collection process at different locations to capture the variation in beacon frame characteristics and RSSI values that may exist in different environments.In the second dataset collection stage, we followed the following steps: Began collecting data by placing the two Raspberry Pis 7.5 feet from each other. This helped to determine the "gray area" between the acceptable threshold distance and the distance at which access should be denied.Moved the two Raspberry Pis closer and farther from each other while keeping the closest distance between them at 7.5 feetRepeated the data collection process at different locations to capture the variation in beacon frame characteristics and RSSI values that may exist in different environments. We collected a total of 4,825 samples of data from two Raspberry Pis (RPi 1 and RPi 2) measuring the SSID and RSSI values of 10 different WiFi APs at different locations and times. The Raspberry Pis were positioned at distances of 7.5 feet or less apart in the \textit{"authentic"} dataset and at distances of 7.5 feet or more apart in the \textit{"unauthorized"} dataset. Each dataset includes six columns: "RPi," "SSID," "Frequency (Hz)," "RSSI (dBm)," "Location," and "Label." The "RPi" column indicates which Raspberry Pi collected the data, the "SSID" column lists the name of the Wi-Fi AP, the "Frequency (Hz)" column specifies the frequency of the Wi-Fi AP in Hz, the "RSSI (dBm)" column shows the RSSI value in dBm, the "Location" column specifies the location where the data was collected, and the "Label" column is a categorical column with the value 1 or 0 for all rows, where 1 means \textit{"authentic"} and 0 means \textit{"unauthorized"}. The resulting dataset was balanced, with 2442 samples in the \textit{"authentic"} dataset and 2383 samples in the \textit{"unauthorized"} dataset. Figure \ref{dataset} shows the five top row of the \textit{"authentic"} dataset. The dataset was then prepared for the implementation phase of the experiment.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

PrimerBank

PrimerBank is a public resource for PCR primers. These primers are designed for gene expression detection or quantification (real-time PCR). PrimerBank contains over 306,800 primers covering most known human and mouse genes.

国家生物信息中心 收录

中国近海台风路径集合数据集(1945-2024)

1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。时间为北京时间。

国家海洋科学数据中心 收录

MNBVC

MNBVC数据集是一个超大规模的中文语料集,包括新闻、作文、小说、书籍、杂志、论文、台词、帖子、wiki、古诗、歌词、商品介绍、笑话、糗事、聊天记录等一切形式的纯文本中文数据。数据集不但包括主流文化,也包括各个小众文化甚至火星文的数据。

github 收录

YouTube-English

该数据集包含从各种YouTube频道提取的英语音频片段以及相应的转录元数据。数据用于训练自动语音识别(ASR)模型。数据来源于YouTube频道,处理过程包括下载、分割和保存音频及元数据。数据集总结部分详细列出了每个频道的视频数量、持续时间和占总数据集的百分比。

huggingface 收录

哈尔滨市区域产业链点发展评估数据

我司基于哈尔滨市区域产业发展的特征,结合数据的可获得性和有效性,基于不同产业链点的产业规模、龙头效应、资本热度、科技创新、发展效率等多个维度构建哈尔滨市区域产业链点的综合发展效能评估体系,并完成数据收集、数据清洗、特征衍生、模型构建、模型验证全过程,形成涵盖哈尔滨市主要产业链下核心链点的区域产业链点发展评分,能有效帮助金融机构在制定产业相关信贷政策以及确定特定产业预授信额度时,更准确全面地评价区域产业的发展效能和动态变化,辅助金融机构更好做好区域产业金融服务。区域产业链点发展指数 = ∑ Si * Xi ,其中Si是指标相应的权重系数,Xi是评价指标,i=1,2,3,……,21,21个指标包括“区域产业链点在营企业数量”“区域产业链点近1年新注册企业数量”等,指标经归一化处理后参与计算。模型结合专家经验和机器学习算法得出,专家主要基于行业实践、政策导向和国际贸易特点,帮助筛选关键指标并初步设定权重范围,然后通过主成分分析和随机森林算法进一步筛选指标并对初始权重进行优化。

浙江省数据知识产权登记平台 收录