five

RSSI Measurements of Beacon Frames from Wi-Fi Radio Waves

收藏
Mendeley Data2024-01-31 更新2024-06-28 收录
下载链接:
https://ieee-dataport.org/documents/rssi-measurements-beacon-frames-wi-fi-radio-waves
下载链接
链接失效反馈
资源简介:
The data collection phase of the proposed system involves the collection of beacon frame characteristics and RSSI values from Wi-Fi APs using two Raspberry Pi devices. The purpose of this phase is to gather enough data to train the ML module of the proposed system to accurately determine the user's devices location based on these characteristics and values. To collect the data, we defined a threshold distance of 7 feet. This is the maximum distance between the user's devices that we consider acceptable for the purposes of this experiment. We then collected two datasets: one with data collected while the two Raspberry Pis were with 7 feet or less of each other, and another with data collected while the distance between the two Raspberry Pis was over 7 feet. In the first dataset collection stage, we followed the following steps:Began collecting data by placing the two Raspberry Pis 7 feet from each other.Moved the two Raspberry Pis closer and farther from each other while maintaining the distance within the predefined threshold.Repeated the data collection process at different locations to capture the variation in beacon frame characteristics and RSSI values that may exist in different environments.In the second dataset collection stage, we followed the following steps: Began collecting data by placing the two Raspberry Pis 7.5 feet from each other. This helped to determine the "gray area" between the acceptable threshold distance and the distance at which access should be denied.Moved the two Raspberry Pis closer and farther from each other while keeping the closest distance between them at 7.5 feetRepeated the data collection process at different locations to capture the variation in beacon frame characteristics and RSSI values that may exist in different environments. We collected a total of 4,825 samples of data from two Raspberry Pis (RPi 1 and RPi 2) measuring the SSID and RSSI values of 10 different WiFi APs at different locations and times. The Raspberry Pis were positioned at distances of 7.5 feet or less apart in the \textit{"authentic"} dataset and at distances of 7.5 feet or more apart in the \textit{"unauthorized"} dataset. Each dataset includes six columns: "RPi," "SSID," "Frequency (Hz)," "RSSI (dBm)," "Location," and "Label." The "RPi" column indicates which Raspberry Pi collected the data, the "SSID" column lists the name of the Wi-Fi AP, the "Frequency (Hz)" column specifies the frequency of the Wi-Fi AP in Hz, the "RSSI (dBm)" column shows the RSSI value in dBm, the "Location" column specifies the location where the data was collected, and the "Label" column is a categorical column with the value 1 or 0 for all rows, where 1 means \textit{"authentic"} and 0 means \textit{"unauthorized"}. The resulting dataset was balanced, with 2442 samples in the \textit{"authentic"} dataset and 2383 samples in the \textit{"unauthorized"} dataset. Figure \ref{dataset} shows the five top row of the \textit{"authentic"} dataset. The dataset was then prepared for the implementation phase of the experiment.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

The MaizeGDB

The MaizeGDB(Maize Genetics and Genomics Database)是一个专门为玉米(Zea mays)基因组学研究提供数据和工具的在线资源。该数据库包含了玉米的基因组序列、基因注释、遗传图谱、突变体信息、表达数据、以及与玉米相关的文献和研究工具。MaizeGDB旨在支持玉米遗传学和基因组学的研究,为科学家提供了一个集成的平台来访问和分析玉米的遗传和基因组数据。

www.maizegdb.org 收录

中国1km分辨率逐月降水量数据集(1901-2024)

该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2024.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。

国家青藏高原科学数据中心 收录

THCHS-30

“THCHS30是由清华大学语音与语言技术中心(CSLT)发布的开放式汉语语音数据库。原始录音是2002年在清华大学国家重点实验室的朱晓燕教授的指导下,由王东完成的。清华大学计算机科学系智能与系统,原名“TCMSD”,意思是“清华连续普通话语音数据库”,时隔13年出版,由王东博士发起,并得到了教授的支持。朱小燕。我们希望为语音识别领域的新研究人员提供一个玩具数据库。因此,该数据库对学术用户完全免费。整个软件包包含建立中文语音识别所需的全套语音和语言资源系统。”

OpenDataLab 收录

PU Dataset

德国帕德博恩大学(PU)轴承故障诊断数据集提供了丰富的轴承故障信号数据,包括内圈、外圈和滚动体故障等多种类型的轴承故障。与其他数据集相比,PU数据集的特色在于包含了大量的电机驱动系统故障数据,为轴承故障诊断研究提供了一个全面的实验平台。

github 收录

MIDV-500

该数据集包含使用移动设备拍摄的不同文档图像,这些图像通常具有投影变形。数据集分为训练和测试两部分,其中训练部分包含30种文档类型,测试部分包含20种,在应用神经网络之前,所有图像都被缩放到统一的宽度,宽度为400像素。该数据集的任务是进行消失点检测。

arXiv 收录