five

RSSI Measurements of Beacon Frames from Wi-Fi Radio Waves

收藏
Mendeley Data2024-01-31 更新2024-06-28 收录
下载链接:
https://ieee-dataport.org/documents/rssi-measurements-beacon-frames-wi-fi-radio-waves
下载链接
链接失效反馈
资源简介:
The data collection phase of the proposed system involves the collection of beacon frame characteristics and RSSI values from Wi-Fi APs using two Raspberry Pi devices. The purpose of this phase is to gather enough data to train the ML module of the proposed system to accurately determine the user's devices location based on these characteristics and values. To collect the data, we defined a threshold distance of 7 feet. This is the maximum distance between the user's devices that we consider acceptable for the purposes of this experiment. We then collected two datasets: one with data collected while the two Raspberry Pis were with 7 feet or less of each other, and another with data collected while the distance between the two Raspberry Pis was over 7 feet. In the first dataset collection stage, we followed the following steps:Began collecting data by placing the two Raspberry Pis 7 feet from each other.Moved the two Raspberry Pis closer and farther from each other while maintaining the distance within the predefined threshold.Repeated the data collection process at different locations to capture the variation in beacon frame characteristics and RSSI values that may exist in different environments.In the second dataset collection stage, we followed the following steps: Began collecting data by placing the two Raspberry Pis 7.5 feet from each other. This helped to determine the "gray area" between the acceptable threshold distance and the distance at which access should be denied.Moved the two Raspberry Pis closer and farther from each other while keeping the closest distance between them at 7.5 feetRepeated the data collection process at different locations to capture the variation in beacon frame characteristics and RSSI values that may exist in different environments. We collected a total of 4,825 samples of data from two Raspberry Pis (RPi 1 and RPi 2) measuring the SSID and RSSI values of 10 different WiFi APs at different locations and times. The Raspberry Pis were positioned at distances of 7.5 feet or less apart in the \textit{"authentic"} dataset and at distances of 7.5 feet or more apart in the \textit{"unauthorized"} dataset. Each dataset includes six columns: "RPi," "SSID," "Frequency (Hz)," "RSSI (dBm)," "Location," and "Label." The "RPi" column indicates which Raspberry Pi collected the data, the "SSID" column lists the name of the Wi-Fi AP, the "Frequency (Hz)" column specifies the frequency of the Wi-Fi AP in Hz, the "RSSI (dBm)" column shows the RSSI value in dBm, the "Location" column specifies the location where the data was collected, and the "Label" column is a categorical column with the value 1 or 0 for all rows, where 1 means \textit{"authentic"} and 0 means \textit{"unauthorized"}. The resulting dataset was balanced, with 2442 samples in the \textit{"authentic"} dataset and 2383 samples in the \textit{"unauthorized"} dataset. Figure \ref{dataset} shows the five top row of the \textit{"authentic"} dataset. The dataset was then prepared for the implementation phase of the experiment.
创建时间:
2024-01-31
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

中国近海台风路径集合数据集(1945-2024)

1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。 数据源为获取温州台风网(http://www.wztf121.com/)的真实观测路径数据,经过处理整合后形成文件,如使用csv文件需使用文本编辑器打开浏览,否则会出现乱码,如要使用excel查看数据,请使用xlsx的格式。

国家海洋科学数据中心 收录

OpenSonarDatasets

OpenSonarDatasets是一个致力于整合开放源代码声纳数据集的仓库,旨在为水下研究和开发提供便利。该仓库鼓励研究人员扩展当前的数据集集合,以增加开放源代码声纳数据集的可见性,并提供一个更容易查找和比较数据集的方式。

github 收录

PU Dataset

德国帕德博恩大学(PU)轴承故障诊断数据集提供了丰富的轴承故障信号数据,包括内圈、外圈和滚动体故障等多种类型的轴承故障。与其他数据集相比,PU数据集的特色在于包含了大量的电机驱动系统故障数据,为轴承故障诊断研究提供了一个全面的实验平台。

github 收录

MIDV-500

该数据集包含使用移动设备拍摄的不同文档图像,这些图像通常具有投影变形。数据集分为训练和测试两部分,其中训练部分包含30种文档类型,测试部分包含20种,在应用神经网络之前,所有图像都被缩放到统一的宽度,宽度为400像素。该数据集的任务是进行消失点检测。

arXiv 收录

danaroth/whu_hi

WHU-Hi数据集(武汉无人机载高光谱图像)由武汉大学RSIDEA研究组收集和共享,可作为精确作物分类和高光谱图像分类研究的基准数据集。该数据集包含三个独立的无人机载高光谱数据集:WHU-Hi-LongKou、WHU-Hi-HanChuan和WHU-Hi-HongHu,均在中国湖北省的农业区域采集。这些数据集通过安装在无人机平台上的Headwall Nano-Hyperspec传感器获取,具有高空间分辨率(H2图像)。数据集预处理包括辐射校准和几何校正,使用仪器制造商提供的HyperSpec软件进行处理。每个数据集都包含了详细的采集时间、天气条件、传感器信息、飞行高度、图像尺寸、波段数量和空间分辨率等信息,并提供了不同作物类别的样本数量。

hugging_face 收录