five

A Comprehensive Study on Autonomous Vehicle Integration for Tırport

收藏
DataONE2024-04-14 更新2024-10-19 收录
下载链接:
https://search.dataone.org/view/sha256:e7f35a5af2f21c45478199ea0528d44324f63cb3e52e88f0a7bab8e7306dbb6c
下载链接
链接失效反馈
资源简介:
Although regular road transportation is convenient, it can be difficult for transportation companies to operate. Most issues stem from timetable delays, poor routing plans, and greater transportation costs, including wages, fuel, and operations expenditures. Wind resistance during high-speed transportation increases fuel use, and human error causes safety incidents that increase costs and environmental damage. Therefore, the platooning system is a strategically designed alternative to keep trucks in a convoy using sensors. Thus, the goal of this research is to determine optimized platooning routes in Turkey’s motorway network and the ideal locations for hubs. Also, we would like to explore the potential of platooning technology to reduce fuel consumption, carbon footprint, and transportation time with mathematical modeling and Python code. According to our results, the 5 hubs should be located in Adana, Ankara, Manisa, Istanbul, and Bursa. The greatest percentage saving is achieved by 4 truck platooning systems with an average of 11% and there is reduction of millions kg of CO2 emission in a day. In addition, we conducted a what-if-analysis with a future motorway in Turkey which resulted in an increase of profit to 12%. Finally, we implemented the waiting times of trucks for each other when forming convoys in a hub and according to our results, we discovered that it can be disregarded in each scenario because they are less than 20 minutes. And also even in the worst case, there is a reduction of total empty mileages by up to 1 in 3.
创建时间:
2024-09-24
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

flames-and-smoke-datasets

该仓库总结了多个公开的火焰和烟雾数据集,包括DFS、D-Fire dataset、FASDD、FLAME、BoWFire、VisiFire、fire-smoke-detect-yolov4、Forest Fire等数据集。每个数据集都有详细的描述,包括数据来源、图像数量、标注信息等。

github 收录

中国近海台风路径集合数据集(1945-2024)

1945-2024年度,中国近海台风路径数据集,包含每个台风的真实路径信息、台风强度、气压、中心风速、移动速度、移动方向。时间为北京时间。

国家海洋科学数据中心 收录

MMOral

MMOral是一个针对全景X光片解读的大规模多模态指令数据集和基准。它包括20,563张带有1.3百万条指令跟随实例的注释图像,涵盖了多种任务类型,如属性提取、报告生成、视觉问答和基于图像的对话。此外,我们还提出了MMOral-Bench,这是一个涵盖牙科五个关键诊断维度的综合评估套件。我们评估了64个LVLMs在MMOral-Bench上的表现,发现即使是表现最好的模型GPT-4o,也只能达到41.45%的准确率,这揭示了当前模型在这一领域的显著局限性。为了促进该特定领域的发展,我们还提出了OralGPT,它使用我们精心策划的MMOral指令数据集对Qwen2.5-VL-7B进行监督微调。值得注意的是,一个SFT周期就为LVLMs带来了显著的性能提升,例如,OralGPT表现出24.73%的改进。MMOral和OralGPT都具有作为智能牙科关键基础的巨大潜力,并使牙科领域中的多模态AI系统更具临床意义。数据集、模型、基准和评估套件可在上述网址获取。

arXiv 收录

大学生运动和体质健康数据集(2014-2023)

《大学生运动与体质健康数据集(2014-2023)》涵盖了大学生群体在运动能力、基础身体形态、身体机能及身体素质等多个方面的关键基础数据。该数据集的采集时间跨度为2014年至2023年,样本采集自全国34个省级行政区域,共计123281名大学生参与,平均年龄为20.53岁。建立大学生运动和体质健康数据集可以准确把握学生体质健康的整体水平和变化趋势,了解大学生运动和体质健康状况,对指导个性化健康干预、优化体育教育资源配置、支持促进科学研究以及提高公众健康意识等均具有重要意义。

国家人口健康科学数据中心 收录

SVAMP

在解决基础应用数学问题时,模型往往主要依赖于浅层启发式方法,而非进行深度推理。因此,一个更具挑战性且经过可靠评估的SVAMP数据集被引入。该数据集改编自现有的数据集,用于评估模型在数学问题解决和推理能力方面的敏感性,其难度保持在相当于小学四年级的水平。

github 收录