five

A Comprehensive Study on Autonomous Vehicle Integration for Tırport

收藏
DataONE2024-04-14 更新2024-10-19 收录
下载链接:
https://search.dataone.org/view/sha256:e7f35a5af2f21c45478199ea0528d44324f63cb3e52e88f0a7bab8e7306dbb6c
下载链接
链接失效反馈
资源简介:
Although regular road transportation is convenient, it can be difficult for transportation companies to operate. Most issues stem from timetable delays, poor routing plans, and greater transportation costs, including wages, fuel, and operations expenditures. Wind resistance during high-speed transportation increases fuel use, and human error causes safety incidents that increase costs and environmental damage. Therefore, the platooning system is a strategically designed alternative to keep trucks in a convoy using sensors. Thus, the goal of this research is to determine optimized platooning routes in Turkey’s motorway network and the ideal locations for hubs. Also, we would like to explore the potential of platooning technology to reduce fuel consumption, carbon footprint, and transportation time with mathematical modeling and Python code. According to our results, the 5 hubs should be located in Adana, Ankara, Manisa, Istanbul, and Bursa. The greatest percentage saving is achieved by 4 truck platooning systems with an average of 11% and there is reduction of millions kg of CO2 emission in a day. In addition, we conducted a what-if-analysis with a future motorway in Turkey which resulted in an increase of profit to 12%. Finally, we implemented the waiting times of trucks for each other when forming convoys in a hub and according to our results, we discovered that it can be disregarded in each scenario because they are less than 20 minutes. And also even in the worst case, there is a reduction of total empty mileages by up to 1 in 3.
创建时间:
2024-09-24
用户留言
有没有相关的论文或文献参考?
这个数据集是基于什么背景创建的?
数据集的作者是谁?
能帮我联系到这个数据集的作者吗?
这个数据集如何下载?
点击留言
数据主题
具身智能
数据集  4099个
机构  8个
大模型
数据集  439个
机构  10个
无人机
数据集  37个
机构  6个
指令微调
数据集  36个
机构  6个
蛋白质结构
数据集  50个
机构  8个
空间智能
数据集  21个
机构  5个
5,000+
优质数据集
54 个
任务类型
进入经典数据集
热门数据集

URPC系列数据集, S-URPC2019, UDD

URPC系列数据集包括URPC2017至URPC2020DL,主要用于水下目标的检测和分类。S-URPC2019专注于水下环境的特定检测任务。UDD数据集信息未在README中详细描述。

github 收录

Stanford Cars

Cars数据集包含196类汽车的16,185图像。数据被分成8,144训练图像和8,041测试图像,其中每个类被大致分成50-50。类别通常在品牌,型号,年份,例如2012特斯拉Model S或2012 BMW M3 coupe的级别。

OpenDataLab 收录

PASCAL VOC 2007

这个挑战的目标是从现实场景中的许多视觉对象类别中识别对象(即不是预先分割的对象)。它基本上是一个监督学习问题,因为它提供了一组标记图像的训练集。已选择的 20 个对象类别是: 人:人 动物:鸟、猫、牛、狗、马、羊 交通工具:飞机、自行车、船、公共汽车、汽车、摩托车、火车 室内:瓶子、椅子、餐桌、盆栽、沙发、电视/显示器 将有两个主要比赛和两个较小规模的“品酒师”比赛。内容:提供的训练数据由一组图像组成;每个图像都有一个注释文件,为图像中存在的 20 个类别之一中的每个对象提供一个边界框和对象类别标签。请注意,来自多个类的多个对象可能出现在同一图像中。

OpenDataLab 收录

Comparative Toxicogenomics Database (CTD)

Comparative Toxicogenomics Database(CTD)是一个公开的综合性数据库,专注于研究环境暴露与人类健康之间的关系。该数据库整合了化学物质、基因、疾病、通路等多维度信息,支持用户查询基因与疾病、化学物质与疾病以及化学物质与基因之间的相互作用,为毒理学研究和环境健康效应研究提供了重要资源。其最新成果包括2025年发布的20周年更新版本,进一步扩展了数据内容和功能。

ctdbase.org 收录

LEVIR-CD

LEVIR-CD 是一个新的大规模遥感建筑变化检测数据集。引入的数据集将成为评估变化检测 (CD) 算法的新基准,尤其是基于深度学习的算法。 LEVIR-CD 由 637 个非常高分辨率(VHR,0.5m/像素)Google Earth (GE) 图像块对组成,大小为 1024 × 1024 像素。这些时间跨度为 5 到 14 年的双时相图像具有显着的土地利用变化,尤其是建筑增长。 LEVIR-CD涵盖别墅住宅、高层公寓、小型车库和大型仓库等各类建筑。在这里,我们关注与建筑相关的变化,包括建筑增长(从土壤/草地/硬化地面或在建建筑到新建筑区域的变化)和建筑衰退。这些双时相图像由遥感图像解释专家使用二进制标签(1 表示变化,0 表示不变)进行注释。我们数据集中的每个样本都由一个注释器进行注释,然后由另一个注释器进行双重检查以产生高质量的注释。完整注释的 LEVIR-CD 总共包含 31,333 个单独的变更构建实例。

OpenDataLab 收录